Weather Makes a Difference: 8-hour Ozone Trends for 1997-2007 State and Local Information for EPA Region 6 Arkansas Louisiana Oklahoma Texas Composite trend for available sites in these states: U.S. Environmental Protection Agency Office of Air and Radiation Office of Air Quality Planning and Standards ## Arkansas Ozone On average, ozone adjusted for weather conditions declined 13 percent between 1997 and 2007. These improvements in ozone are in response to both state and regional reductions in NOx and VOC emissions. The level of ozone improvement varies from site to site. Trends for 1997-2007 for rural sites and urban areas with complete ozone and meteorology data are presented below. Ozone season (May 1 - September 30) averages of daily maximum 8-hour ozone were adjusted to remove the influence of year-to-year variability in weather conditions. The dotted line shows the trend in observed values at monitoring sites, while the solid line illustrates the underlying ozone trend after removing the effects of weather. The solid line serves as a more accurate ozone trend for assessing changes in emissions. Typical weather conditions are determined by averaging conditions (e.g., temperature, humidity, etc.) for the time period presented. The information provided is useful for reviewing the weather influence for a particular ozone season. The solid line represents ozone levels anticipated under typical weather conditions. ## Louisiana Ozone On average, ozone adjusted for weather conditions declined 15 percent between 1997 and 2007. These improvements in ozone are in response to both state and regional reductions in NOx and VOC emissions. The level of ozone improvement varies from site to site. Trends for 1997-2007 for rural sites and urban areas with complete ozone and meteorology data are presented below. Ozone season (May 1 - September 30) averages of daily maximum 8-hour ozone were adjusted to remove the influence of year-to-year variability in weather conditions. The dotted line shows the trend in observed values at monitoring sites, while the solid line illustrates the underlying ozone trend after removing the effects of weather. The solid line serves as a more accurate ozone trend for assessing changes in emissions. Typical weather conditions are determined by averaging conditions (e.g., temperature, humidity, etc.) for the time period presented. The information provided is useful for reviewing the weather influence for a particular ozone season. The solid line represents ozone levels anticipated under typical weather conditions. ## Oklahoma Ozone On average, ozone adjusted for weather conditions declined 11 percent between 1997 and 2007. Ozone trends vary from site to site. Trends for 1997-2007 for rural sites and urban areas with complete ozone and meteorology data are presented below. Ozone season (May 1 - September 30) averages of daily maximum 8-hour ozone were adjusted to remove the influence of year-to-year variability in weather conditions. The dotted line shows the trend in observed values at monitoring sites, while the solid line illustrates the underlying ozone trend after removing the effects of weather. The solid line serves as a more accurate ozone trend for assessing changes in emissions. Typical weather conditions are determined by averaging conditions (e.g., temperature, humidity, etc.) for the time period presented. The information provided is useful for reviewing the weather influence for a particular ozone season. The solid line represents ozone levels anticipated under typical weather conditions. ## Texas Ozone On average, ozone adjusted for weather conditions declined 6 percent between 1997 and 2007. There have been improvements in Dallas and Houston in recent years. These improvements in ozone are in response to both state and regional reductions in NOx and VOC emissions. Ozone trends vary from site to site. Trends for 1997-2007 for rural sites and urban areas with complete ozone and meteorology data are presented below. Ozone season (May 1 - September 30) averages of daily maximum 8-hour ozone were adjusted to remove the influence of year-to-year variability in weather conditions. The dotted line shows the trend in observed values at monitoring sites, while the solid line illustrates the underlying ozone trend after removing the effects of weather. The solid line serves as a more accurate ozone trend for assessing changes in emissions. Typical weather conditions are determined by averaging conditions (e.g., temperature, humidity, etc.) for the time period presented. The information provided is useful for reviewing the weather influence for a particular ozone season. The solid line represents ozone levels anticipated under typical weather conditions.